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1 Executive Summary

This paper evaluates portable software packages for the iterative solution of very large sparse linear systems

on parallel architectures. While we cannot hope to tell individual users which package will best suit their

needs, we do hope that our systematic evaluation provides essential unbiased information about the packages

and the evaluation process may serve as an example on how to evaluate these packages. The information

contained here include feature comparisons, usability evaluations and performance characterizations. This

review is primarily focused on self-contained packages that can be easily integrated into an existing program

and are capable of computing solutions to very large sparse linear systems of equations. More speci�cally,

it concentrates on portable parallel linear system solution packages that provide iterative solution schemes

and related preconditioning schemes because iterative methods are more frequently used than competing

schemes such as direct methods. The eight packages evaluated are: Aztec, BlockSolve, ISIS++, LINSOL,

P SPARSLIB, PARASOL, PETSc, and PINEAPL.

Among the eight portable parallel iterative linear system solvers reviewed, we recommend PETSc and

Aztec for most application programmers because they have well designed user interface, extensive docu-

mentation and very responsive user support. Both PETSc and Aztec are written in the C language and

are callable from Fortran. For those users interested in using Fortran 90, PARASOL is a good alternative.

ISIS++ is a good alternative for those prefer the C++ language. Both PARASOL and ISIS++ are relatively
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new and are continuously evolving. Thus their user interface may change. In general, those packages written

in Fortran 77 are more cumbersome to use because the user may need to directly deal with a number of arrays

of varying sizes. Languages like C++ and Fortran 90 o�er more convenient data encapsulation mechanisms

which make it easier to implement a clean and intuitive user interface.

In addition to reviewing these portable parallel iterative solver packages, we also provide a more cursory

assessment of a range of related packages, from specialized parallel preconditioners to direct methods for

sparse linear systems.

2



2 Introduction

Solving a linear system of equations is one of the common tasks performed in many scienti�c and engineering

computations. There are a large number of software packages available on many di�erent platforms for this

task. These software packages provide varying functionalities and information regarding them is scattered

in many locations. This makes it di�cult for a prospective user to make an educated choice. There are a

number of software archives and listings that are devoted to scienti�c software or numerical linear algebra

software, e.g., NETLIB1, ACM TOMS archive2, GAMS3. Typically, software packages are listed without

quality judgment or usability information. One important exception to this generalization is the National

High-performance Software Exchange (NHSE)4 which provides review of many scienti�c software packages.

One extensive review of available software for solving linear systems was published in 1998 by Victor Eijkhout

[15]. Since then, a number of new software packages have become available; reviewed packages have also

been updated. In particular, some new software using C++ and advanced user interface design practices

have the potential to revolutionize the way linear system solvers are used. Eijkhout's review [15] covers 15

di�erent software but does not provide in-depth assessment. In this survey, we will follow a more rigorous

user-interface evaluation procedure [37, 36] and provide more comprehensive review based on the up-to-

date information about the linear system solver packages. We will concentrate on a subset of the available

packages and perform a more in-depth analysis and evaluation. The evaluation includes critical information

on usability, interface, features, and performance characteristics of prominent iterative linear system solvers

for distributed parallel machines. This should reduce the need for users to conduct their own evaluations

and make it easier to select the right packages for their application programs. We also hope that it will serve

to correct some prominent misconceptions related to performance and usability.

In Section 3, we describe the scope of the comparisons and the methodology used for comparisons. The

basic information about the eight reviewed packages are given in Section 4. Section 5 contains the comparison

of functionalities. Section 6 is devoted to assess the usability which is subjective in nature. To evaluate the

1NETLIB URL is http://www.netlib.org.
2ACM TOMS archive is located at http://www.toms.acm.org.
3GAMS archive on the web http://gams.nist.gov/.
4NSHE URL is http://www.nhse.org.
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performance of these software packages, we conduct a small number of tests using a selected set of large test

problems. The performance evaluation is not extensive, but the information provided should be instructive.

This limited performance evaluation is recorded in Section 7. Section 8 contains a short summary of the

comparisons and our overall impression on the eight reviewed packages. Some information on related software

packages are given in the appendix.

3 Scope

There are a number of software packages that are primarily devoted to handling large matrices and �nding

solutions to linear systems of equations. This review concentrates on those portable stand-alone packages

that are designed for solving very large linear systems where the coe�cient matrices are too large to be

stored as simple two-dimensional arrays. In most cases, either only the nonzero entries of these matrices are

stored in some sparse matrix format or the matrices are not stored at all. Even without storing the extra zero

entries or without storing the matrix at all, the application program still may not �t into the main memory

of an average desktop computer. These programs usually run on distributed-memory parallel machines.

The typical method used to solve these linear systems is a Krylov subspace based method [7, 44]. Using

one of these methods, the coe�cient matrix is primarily needed to perform matrix-vector multiplications,

and the user can store the matrix in any format that is convenient for the application. Furthermore, these

methods require only a small amount of computer memory in addition to the storage required for the linear

system. Direct methods [14, 18] based on Gaussian Elimination typically require much more computer

memory, therefore may not be a viable option in this case. For this reason, our evaluation concentrates on

iterative methods. In a typical application, a preconditioner is often needed to reduce the time to compute

the solution [7, 44]. In the following comparisons, we will only consider those packages that contain all

basic components of a self-contained iterative solvers, are reasonably easy to portable to di�erent type of

distributed computing environment. More speci�cally, we will evaluate sparse iterative solver packages that

� contain their own

{ solvers,
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Table 1: The web addresses for the eight parallel iterative packages.

Aztec http://www.cs.sandia.gov/CRF/aztec1.html
BlockSolve http://www-unix.mcs.anl.gov/sumaa3d/BlockSolve
ISIS++ http://z.ca.sandia.gov/isis
LINSOL http://www.rz.uni-karlsruhe.de/Uni/RZ/Forschung/Numerik/linsol
P SPARSLIB http://www.cs.umn.edu/Research/arpa/p sparslib
PARASOL http://www.genias.de/projects/parasol
PETSc http://www.mcs.anl.gov/petsc
PINEAPL http://www.nag.com/projects/PINEAPL

{ preconditioners,

{ matrix-vector multiplication;

� run on distributed memory parallel machines;

� are portable;

� are easy to obtain either the source code or the library;

� contains no prohibitive licensing;

� are active supported;

� can be used independently { not a component tightly integrated into an application program;

� and can potentially be interchanged with one another.

Based on these criteria, we have searched all the software archives that are known to us and have also

requested for information from experts in the �eld of numerical linear algebra through NA digest5. The

software package found are listed in Table 1.

While we will evaluate all of these packages, we will not be able to evaluate them uniformly because of

constraints such as software maturity, availability, and stability. Even though the developers promised to

distribute LINSOL to the research user for free, however at the time of this writing, we are unable to obtain

it from the developers. BlockSolve fails to run a simple test program we developed due to an apparent

bug in the package and we are unable to get satisfactory responses from the developers (funding for its

5Information about NA net and NA digest can be found at http://www.netlib.org/na-digest-html.
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development has stopped). PINEAPL was not able to run correctly on one of our main testing platform, a

Cray T3E, because of 
oating-point arithmetic problems. We thus focus much of the discussion on Aztec,

Isis++, PARASOL, P SPARSLIB, and PETSc.

The evaluation of the software will be divided into three categories, functionality, usability and perfor-

mance. The information for functionality is based on our survey of the documentation and the implementa-

tion. The comparison among the packages will include the following aspects,

� breadth of iterative methods provided,

� breadth of preconditioning options,

� input data formats and support functions,

� sophistication of the methods implemented,

� quality of implementation, e.g., error-checking/handling and extensibility.

For usability, our evaluation is based on commonly used criteria. The information provided here is

primarily based our own experiences of using these packages and on the user comments collected. The

speci�c items checked are

� clarity of documentation,

� user interface design and consistency,

� helpfulness of the feedback from the software,

� ease of use,

� ease of learning to use,

� interoperability with other packages,

� licensing and developer support.

We will provide some performance informationabout Aztec and PETSc. We have chosen to only study the

performance of these two packages because they are the most commonly used packages from our user survey.
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Since there are a large number of di�erent features implemented by these packages, attempting to perform an

exhaustive study will take too long and make this report less timely and less useful. The performance data

are collected from \real world" test problems, see Table 7 for brief descriptions. These test matrices have

large condition numbers and are di�cult for most iterative methods. Only a simple set of tests are performed

on these test problems. These tests apply the GMRES method without preconditioning for a �xed number

of iterations. We report on the time used to set up the iterative methods and the time spent during the

iterations. The iteration time primarily re
ect the speed of the parallel sparse matrix-vector multiplication

routines of the packages. Since the matrix-vector multiplication is a very well-de�ned operation, the di�erence

in the speed can be taken as indirect evidence of how well the package is implemented. Everything else being

equal, the package with faster matrix-vector multiplication package can be thought as a better package. The

setup time is also an indicator of the quality of the software packages. The setup stage should be faster and

should require minimal amount of workspace.

4 Software packages

Given these stated criteria, we searched the internet and literature for software packages that meet them.

In addition to our own search, we have also broadcasted a request for information through the NA digest.

Through these searches we are able locate the following ten software packages:

� Aztec This package is written in C. The developers are a group of scientists from Sandia National

Laboratories, Ray S. Tuminaro, John N. Shadid, Scott A. Hutchinson, Lydie Prevost, and Charles H.

Tong [26]. The software is available from the developer's web site at http://www.cs.sandia.gov/-

CRF/aztec1.html.

� BlockSolve This package is also written in C. The developers are Mark T. Jones and Paul E.

Plassmann [27]. This software is not being actively updated but the iterative methods and precondi-

tioners implemented are reasonable current. The latest version is BlockSolve95 which is available from

http://www-unix.mcs.anl.gov/sumaa3d/BlockSolve.
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� ISIS++ This package is developed by Benjamin Allan, Robert Clay, Kyran Mish and Alan Williams

from Sandia National Laboratories [2]. It is a relative new development project using C++ and one

of its stated goal is to provide linear system solution service as a simple interchangeable component.

The software is available at http://z.ca.sandia.gov/isis.

� LINSOL This parallel interactive solver package is by H. H�afner, W. Sch�onauer and R. Weiss of

Universit�at Karlsruhe [21, 22]. The code is available free to scienti�c researchers. It contains many

variants of iterative solvers that are not commonly available in other packages. In addition, it also

contains a set of polyalgorithms that might reduce the di�cult of selecting an appropriate iterative

method.

� P SPARSLIB This package is mostly written in Fortran 77. Some C examples are also provided

with the latest distribution. The main contributors include Yousef Saad, Andrei V. Malevsky, G. C.

Lo, Sergey Kuznetsov, Masha Sosonkina, Irene Moulitsa. Other contributors to the software package

are indicated in the source code of the software. The latest version of the software is available at

http://www.cs.umn.edu/Research/arpa/p sparslib/psp-abs.html.

� PARASOL PARASOL is developed by a collaborative e�ort of a number of European research or-

ganizations and their industrial partners. It includes not only iterative methods for linear system

solutions but also direct methods. The implementation is in Fortran 90 with MPI for interprocessor

communication. Some documents about the software are available, for example, an overview document

[5] and the user interface speci�cation [19], but not all aspects of the software are documented at this

moment.

� PETSc This software is written in C but follows the basic features of Object-Oriented design. The

developers are Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith, from Argonne

National Laboratory [8]. It is one of the �rst public available parallel iterative solver packages adopting

the MPI standard and it has built up a large user group. The latest version of the software is available

at http://www.mcs.anl.gov/petsc.
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� PINEAPL This parallel linear algebra package is developed by NAG (Numerical Algorithms Group)

[35]. The implementation language is Fortran and inter-processor data communications are performed

through BLACS. This package contains an extensive set of iterative methods and preconditioners for

large sparse linear systems.

5 Functionality

The majority of the successful iterative methods in use today is some form of the Krylov subspace method.

A Krylov subspace method can function with two basic components, an accelerator, also called an iterative

method, and a matrix-vector multiplication routine. But in most cases, a robust preconditioner is necessary

to successfully compute the solution of most real-world problems. Based on our survey of the documentation

and the source code, our comparison of the functionality focuses on three main categories, the iterative

methods, the preconditioners, and the date structure for representing the linear systems. Comments on

quality of implementation, error-checking, robustness and extensibility are given near the end of this section.

5.1 Iterative methods

This subsection lists the di�erent iterative methods implemented by the eight packages, see Table 2. The

details of the algorithms listed here are described in most standard textbooks [7, 20, 44]. Table 2 has three

parts. The �rst part lists which ones of the seven most commonly used iterative methods are implemented

by the eight packages, the second part lists whether any poly-algorithms are implemented, and the third

part lists other iterative methods implemented. In the �rst part, the seven methods are displayed as row

headings and the eight packages are displayed as column headings, when the intersection of a row and a

column is marked with 'Y', the corresponding package implements the iterative method. If the intersection

is not marked, the package does not implement the named iterative method. The second part of the table

indicate where the package also supply intelligent polyalgorithms that are able to automatically switch to

a di�erent method when the current one stagnates. The third part of the table is the last row of the table

that names the iterative methods outside of the seven methods in the top part of the table.
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Table 2: Iterative methods provided by di�erent packages.
Aztec BlockSolve ISIS++ LINSOL P SPARSLIB PARASOL PETSc PINEAPL

CG Y Y Y Y Y Y Y
SYMMLQ Y Y
BiCGSTAB Y Y Y Y Y Y
GMRES Y Y Y Y Y Y Y
TFQMR Y Y Y
BiCG Y
QMR Y Y Y
poly-
algorithm Y Y
other CGS FGMRES,

DefGM-

RES,

CGS,

CGNR,

CGNE[2]

ORTHO-

MIN,

Fridman,

OR-

THORES,

GMERR,

BICO,

CGS,

CGNE,

CGNE-

ATPRES

[46]

DBCG

[41],

DQGM-

RES [39],

FGMRES

[43], FOM

[44]

direct

methods

[6], FETI,

DD

CGS, CR,

LSQR

CGS

Among the seven iterative methods, the �rst two are for symmetric linear systems, the rest are for

nonsymmetric linear systems. In most cases, when CG is mentioned, the preconditioned version (PCG) is

implemented [7, 20]. The only exception is P SPARSLIB [38] which implements the standard CG algorithm.

The CG algorithm is designed to solve symmetric positive de�nite linear systems. When a preconditioner

is applied from one side, the preconditioned linear system is very likely to become nonsymmetric. To keep

the preconditioned linear symmetric positive de�nite, the PCG algorithm is designed to implicitly split

the preconditioner. When using CG from P SPARSLIB, the user must split the preconditioner explicitly

and apply preconditioning from both left and right. When using other packages, the user speci�es one

preconditioner. In order for PCG to function properly, the preconditioner has to be positive de�nite. When

the symmetric linear system or the preconditioned linear system is inde�nite, SYMMLQ should be used. A

method for nonsymmetric system might also be e�ective in this case.

The �rst three of the �ve nonsymmetric methods only require the matrix A to be used in the operation

Ax, but the last two require both the operations of Ax and ATx. Often providing the function to perform

ATx requires signi�cant amount of work, therefore, the last two methods are not as popular as the �rst three.
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At every iteration of the GMRES algorithm, it expands the size of the Krylov subspace by one. All the

packages that implement GMRES, implement a restarted version, i.e., when the Krylov subspace reaches a

speci�ed size, the algorithm is restarted with the latest solution as the starting solution. On many problems,

the behaviors of restarted GMRES is quite di�erent from that of TFQMR or BiCGSTAB [47]. Since it is

di�cult to predict which one of them will work the best, most packages o�er at least GMRES and one of

TFQMR or BiCGSTAB.

When solving a di�cult linear system, an iterative method may converge very slowly. This phenomenon

is known as stagnation. For example, GMRES is often very e�ective in reducing the residual norm during the

�rst few restarts, however, it may experience stagnation later. It has been observed that when one method

stagnates a di�erent method often can reduce the residual further [22, 47]. This suggests that one might be

able to design some intelligent way of switching among available iterative methods in order solve a di�cult

linear system. This kind of polyalgorithm is also helpful for novice users since the user is not required to

select a method from the many choices presented.

Among the special methods provided by di�erent packages, the most popular one is CGS. Since it may

have erratic convergence behavior, BiCGSTAB or TFQMR should be used in its place. Other iterative

methods with notable features are FGMRES and DQGMRES which are variants of GMRES. They allow

the user to change preconditioner after every iteration. This feature may be useful, for example, it allows

one to use another Krylov subspace method as preconditioner. Varying the preconditioner may also help to

alleviate the stagnation problem in some cases. DQGMRES is a truncated variant of the GMRES algorithm,

it has some di�erent features from the restarted GMRES and may be used as an alternative to the commonly

used restarted version. DefGMRES implemented in ISIS++ is another variant of GMRES. It is a restarted

GMRES that explicitly de
ates out the eigenvector components corresponding to eigenvalues close to zero.

When GMRES is used with de
ation, it often achieves much better performance than without de
ation by

avoiding stagnation [12]. The authors of LINSOL are experts in developing new iterative algorithms and

their package contains a number of special algorithms of their invention. These methods can be interesting

alternatives for those who are interested in trying out new methods.

PARASOL does not implement any of the common iterative methods yet. The two main iterative

11



Table 3: Preconditioners available from parallel iterative solver packages.
Aztec BlockSolve ISIS++ LINSOL P SPARSLIB PARASOL PETSc PINEAPL

diag Y Y Y Y Y
SOR Y Y Y
ILU/IC Y Y Y
B-Jacobi Y Y Y Y
ODD Y Y Y
AI Y
other Neumann

and least-

squares

polynomi-

als

coloring

and clique

�nding

available

Neumann

and least

squares

polynomi-

als up to

order 10

[2]

SOR im-

plemented

with

coloring

schemes,

Schur

comple-

ment

use do-

main

decom-

position

scheme as

solver

Richard-

son,

Cheby-

shev,

IC and

ILU on 1

PE, can

also use

BLOCK-

SOLVE

coloring

options

available

schemes currently available are domain decomposition method6 and FETI. These methods are intended

to solve linear systems from discretizing PDE problems where information about the physical domain is

available. The multifrontal sparse direct method [4, 3, 6] from PARASOL is relatively stable and has been

extensively used be other components of PARASOL.

5.2 Preconditioning

The preconditioning provided by the eight packages are listed in Table 3. The lay-out of this table

is close to the previous one. The top half of the table shows which package implements which of the six

common parallel preconditioners. The last row of the table shows the other preconditioners the packages

also implemented and notes about the preconditioning schemes.

The six parallel preconditioner listed in Table 3 are: diagonal scaling (diag), SOR/SSOR [20], incom-

plete LU (in symmetric case incomplete Cholesky) factorization [33], block-Jacobi iteration [44], overlapping

domain-decomposition (ODD) [44] and approximate inverse (AI) [44]. The diagonal scaling can be performed

by itself as a preconditioner, but more frequently, it is combined with another one. The SOR scheme listed

in this table refers to the version that is used on sequential machines. Some forms of the multiplicative

domain decomposition based preconditioner are regarded as block SOR. These preconditioners are listed

6The source code distribution contains document about domain decomposition algorithms in directory solver/ddm/doc.
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under the title of domain decomposition. Since the SOR scheme o�ers limited parallelism, it is often used

with a multi-coloring scheme to enhance the parallelism. Incomplete factorization schemes are successfully

used on many di�erent types of linear systems in the sequential environment. However on distributed ma-

chines, they have only limited parallelism and are not as widely used as block-Jacobi preconditioner or the

domain-decomposition based preconditioners.

The block-Jacobi preconditioner is one of the most commonly used parallel preconditioners. It is one of

the simplest preconditioners available, easy to implement and very inexpensive to use. It has good parallel

e�ciency and it often reduces the number of iterations needed to compute a solution. Implementations of

this scheme di�er from each other in how they decide the block size and how they solve the local problems

on each processor. In most cases, the block size is chosen so that each processor owns a block of the matrix

and the the diagonal blocks are inverted either exactly or approximately. Those packages that supports

sparse matrix with dense block entries usually also support a version of Jacobi method that operates on the

dense block entries as a whole. For example, Aztec, BlockSolve and ISIS++ support this form of the block-

Jacobi preconditioner. Similar choices also exist for the overlapping domain decomposition preconditioners.

Additionally, the overlapping domain decomposition has more options such as how to decide the overlap and

how to integrate the approximate solutions of the overlapping nodes. For the �ve packages that are marked

to have either block-Jacobi preconditioner or the overlapping domain decomposition preconditioner, here is

more information on their implementation.

� Aztec implements a set of overlapping domain decomposition schemes based on additive Schwarz

iterations. When no overlap is used, this scheme reduces to a block-Jacobi preconditioner. The

methods used to solve the local problem include: LU, ILUT, ILU(k), RILU, ICC when the matrix is

symmetric and BILU(k) when the input matrix has block entries. The user can control overlapping

by specifying the width of the overlapping region and Aztec takes care of the details of forming the

preconditioner.

Aztec also implements a special version of this scheme (AZ sym GS) which is a non-overlap additive

Schwarz with Gauss-Seidel iteration as local solver. The block Jacobi preconditioner in this package is

a version only for the block-entried sparse matrices.
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� BlockSolve The block-Jacobi preconditioner works on dense diagonal blocks. The input matrix need

not be in a block-entried form, BlockSolve will analyze the graph of the sparse matrix to discover cliques

in the graph and reorder the matrix so that nodes of a clique are ordered next to each other. This

causes dense submatrices to be formed on the diagonal. This form of the block-Jacobi preconditioner

is often more e�ective than the simple Jacobi preconditioner.

� ISIS++ implements the block Jacobi preconditioner both with overlap and without overlap. The

block size can be controlled by the user. The ISIS++ reference guide does not mention how the local

problems are solved.

� P SPARSLIB has a number of incomplete LU factorizations for solving the local linear systems, e.g.,

ILU(0), MILU, ILUT, ILUTP, and Gauss-Seidel iterations. In fact, if FGMRES or DQGMRES is

used, the local problems can be also solved by another iterative method such as GMRES. The user is

responsible for generating the overlapping decomposition of the matrix. Though a number of helper

routines are available from P SPARSLIB, performing your own overlapping decomposition still takes

some amount of programming.

� PETSc o�ers block Jacobi, block Gauss-Seidel and overlapping additive Schwarz preconditioners with

a full set of options [8]. By default, ILU(0) is used to solve the local linear systems, the width of the

overlapping region is 1, and the additive Schwarz uses full restriction and ignores o�-processor values

during interpolation. All these options can be modi�ed by the user either on command-line or inside

the program.

Approximate inverse is a relatively new type of preconditioning strategy for parallel machines [9, 13,

17, 30]. Explicit forms of the approximate inverse preconditioners can be easily applied as parallel sparse

matrix-vector multiplication which can usually be performed faster than triangular solutions required by all

incomplete LU preconditioners. Approximate inverse preconditioners can be easily constructed for matrices

with zero diagonal elements or singular diagonal submatrices. It is likely that more parallel iterative solver

packages will o�er this option in the future. At the moment, only ISIS++ o�ers this type of preconditioners.

Among the other preconditioners implemented by various packages, polynomial preconditioners are the
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most common ones. Two types of popular polynomials implemented are Neumann series and least-squares

polynomials. Typically, relative low order polynomials are used, say 5 { 10. Aztec does not have a preset

limit on the order of polynomials but ISIS++ limits the maximum order to be 10.

Another type of preconditioners worth noting is the Schur's complement based scheme implemented in

P SPARSLIB. At the moment, the developers have not put out any document on this feature, but there are

examples in the latest P SPARSLIB distribution (version 3.0).

5.3 Specifying the linear system

How to specify the linear system to the iterative solver packages is the third topic to be discussed in this

section. This part of the discussion mostly concentrates on the data structures used to specify the linear sys-

tem. Closely associated with the external data structure is the internal data structure used by the packages

to perform its own operations, e.g., the parallel matrix-vector multiplication and construction of precon-

ditioners. We will not discuss the issues related to performing parallel sparse matrix-vector multiplication

or construction of preconditioners. Consult references [11, 40, 45] if you are interested in reading further

about how to construct an e�cient parallel matrix-vector multiplication. The references given during the

discussion of the preconditioners should be a good starting point for learning about preconditioning.

A linear system of equations consists of three entities: the matrix, the right-hand side and the solution

vector. Typically, the iterative method uses a starting vector as the initial guess of the solution vector.

Altogether, there are three vectors and a matrix. Usually, the vectors are stored as simple one dimensional

array. The matrices in this discussion are assumed to be sparse, i.e., the majority of their entries is zero.

There are a number of schemes commonly used to store the sparse matrices in sequential environment [10, 42],

there is no accepted standard for storing sparse matrices on distributed machines. Table 4 summarizes the

data structure used by the eight packages, more information about the data structure and overall schema

are provided below.

� Aztec uses two data structures for storing the sparse matrices, DMSR and DVBR. They are distributed

versions of MSR and VBR. The major di�erence between the two formats is that DMSR is intended

to be used with point entry sparse matrices and DVBR is to be used with block entry sparse matrices.
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Table 4: Summary of data structures and overall schema.

Aztec BlockSolve ISIS++ LINSOL P SPARSLIB PARASOL PETSc PINEAPL
comma MPI MPI MPI MPI MPI MPI MPI BLACS
vector array array class vector vector vector struct array
matrix DMSR,

DVBR

distributed

CSR, or

access

inter-

nal data

structure

put matrix

into one

of the

de�ned

classes

distributed

CSR

distributed

COO

distributed

COO

precond
exposedb no no yes yes no no yesc

schema construct

matrix

data

struc-

ture, set

options,

solve

construct

matrix, set

options,

solve

construct

vectors,

matrix,

precon-

ditioner

and linear

system ob-

jects with

desired

options,

solve

construct

matrix,

process for

matrix-

vector

multipli-

cation,

factor

local sub-

matrices,

enter

reverse

commu-

nication

loop to

solve

distribute

matrix, set

options,

solve

construct

matrix, set

options,

solve

distribute

matrix,

construct

precon-

ditioner,

solve, or

use expert

routine to

avoid con-

structing

precondi-

tioner

aUnderlying communication layer.
bIs preconditioner exposed to user? Exposed preconditioner may require to constructed it explicitly.
cEven though PARASOL is able to construct preconditioners, it requires the user to allocate enough computer memory for

it.
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The users are required to put their matrices into one of these formats and while Aztec is using the

matrices the users can not modify or deallocate the data structures. The solution process is controlled

by modifying an options array. After converting the user data into DMSR or DVBR, all further

modi�cation to the matrix are performed by calling Aztec functions.

The sparse matrices are expected to be distributed by the user and each row of the matrix must belong

to an unique processor. The vectors are stored as simple one-dimensional arrays and their distribution

must conform to the distribution of the matrix, in other words, if row i of the matrix belongs to

processor p, the ith element of every vector must be on the same processor. This conformity in data

distribution is typically assumed in most packages.

� BlockSolve internally uses a compressed format for storing sparse matrices. This internal data struc-

ture is a general form compressed row storage format. The user may construct this data structure

himself or use a supporting routine to convert from a distributed CSR data format. The conversion

routine requires the matrix to be distributed in block row format, in other words, each processor can

only have a set of consecutive rows of the global matrix. This is a small restriction since the user can

use one of many reordering packages to reorder the sparse matrix so that the required simple partition-

ing scheme does not harm the parallel performance of the iterative methods [29]. When the conversion

function is used, the user's data structure is implicitly used. Even though no further operations of

BlockSolve explicitly involves the user data structure, the user's distributed CSR data structure can

not be modi�ed or deallocated.

Once the user data is converted to the required internal format, all the manipulation required to

construct preconditioners and perform matrix-vector multiplications are done by BlockSolve functions,

so that the user does not need to directly manipulate the internal data. The user controls the operations

of the BlockSolve through calls to a set of functions that changes the BlockSolve context. The vectors

are expected to be distributed conformally as the matrix.

� ISIS++ requires the users to put their sparse matrices into one of several distributed sparse matrix

classes de�ned in the package and put vectors into a distributed vector class. A number of functions are
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provided to input the nonzero entries into the matrices after the classes are initialized. The distribution

of the matrix and the vectors are controlled by a map class. After the matrices are constructed the user

may construct preconditioners from them. With the matrix, the right-hand side and the initial guess

vector, the user can declare a linear equation class which will handle the �nal solution process. The

linear equation class needs an iterative method class and a preconditioner class in order to compute

the �nal solution.

� LINSOL allows one to input the matrix in a number of forms, for example, one row at a time, one

column at a time, or even an arbitrary submatrix. Presumably, LINSOL takes care of assembling all

the pieces together and compute the solution without further requiring the user to manipulate the

matrix. The documentation [46] is somewhat vague on the speci�cs.

� P SPARSLIB employs the reverse communication scheme to interact with the matrix and the precon-

ditioner. This means that the user has complete control over how the matrices and the preconditioners

are stored in memory. The distributed matrix-vector multiplication routine of P SPARSLIB uses a

distributed version of CSR format to store matrices. To use this matrix-vector multiplication routine,

the user need to distribute their matrix in row-wise fashion and call the preprocessing routines to re-

order the local portion of matrix and generate necessary information for the matrix-vector routine. To

prepare a preconditioner, the use need to call an incomplete LU factorization routine on the diagonal

blocks of the matrix on each processor. The iterative methods return control to the user at every

iteration and ask the user to perform matrix-vector multiplications or preconditioning operations.

The vectors are expected to be distributed conformally as the matrix.

� PARASOL has speci�ed a fairly complete set of mechanisms for the user to input the matrix and the

related information [19]. Users need to �rst enable PARASOL and compute a mapping for the linear

system. Another important distinction between this package and the others is that the sparse matrices

are expected to be in compressed column format.

� PETSc allows one to input a sparse matrix in row index, column index and nonzero value triplet

format (also known as coordinate format) or simply specify that the user will perform the matrix-vector
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multiplication (matrix-free). To input the matrix to PETSc, the user need to �rst initialize a PETSc

sparse matrix data structure before specifying the nonzero entries. Once all the nonzero entries are

speci�ed, the user can construct preconditioners and compute the solution of a linear system without

having to directly manipulate the matrix data structure again. PETSc can distribute the input sparse

matrix without user intervention and because of this the user may input all nonzero entries from one

single processor. The distributed vectors are generated in a similar manner. In both cases, the user is

not explicitly aware of the distribution schemes used internally.

� PINEAPL requires the user to store the matrix in a distributed coordinate format and the matrix

distribution is speci�ed in block cyclic fashion following BLACS and ScaLAPACK. The corresponding

vectors must be distributed conformally. The user may either choose a set of three functions to perform

setup, solve and postprocessing, or a single expert routine to compute the solution.

Matrix-free versions of the iterative methods are also provided for those who want more control over the

data storage format and preconditioning schemes. The matrix-free versions use reverse communication

similar to that used in P SPARSLIB.

5.4 Quality of implementation

A number of issues related to software quality are discussed here. There are many quality issues, we limit

the discussion to the issues related to error handling and extensibility.

The majority of the eight software provide limited feed-back about error conditions by either returning

an integer error code or passing back an integer error code as a function argument. When a package is

implemented in Fortran or C, this is the primary mechanism for providing feed-back about errors. Even

though ISIS++ uses C++, it also returns an error code as its primary error feedback mechanism. BlockSolve

also provides a global variable for some error conditions and provides a set of macro functions for checking

this variable. PETSc has a much more extensive error checking than the other packages. A program using

PETSc can be instructed to start a debugger when encountering an error.

Documentation about error code is incomplete or nonexistent in most cases. PINEAPL is an exception in

this case, it does have documentation on every error code of every function. ISIS++ provides explanations
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about its error code for major functions such as the solve function of its Solver class. PETSc requires the

user to use one of the two macro functions CHKERRA and CHKERRQ to handle error codes returned. If

the user fail to use these functions, the program may hang in some cases such as one of the process fail to

allocate the required workspace. Aztec and P SPARSLIB has comments in the source code that explains

most of the error code returned. The source code of ISIS++ and PARASOL have very few comments other

than the copyright notices.

PETSc was designed to be extensible. There is a mechanism for users to register their own functions such

as an iterative solver or a preconditioner. The users who are interested in this feature should make sure to use

the latest version of the program and the documentation since the mechanism has changed considerably since

earlier releases. Those packages that employ reverse communication, such as P SPARSLIB and PINEAPL,

are also extensible since the user can use any preconditioning or matrix-vector multiplication routine.

6 Usability

We evaluate the usability of the packages by evaluating the documentation, user interface design, learning

time, interoperability and support. Each of these categories can be subdivided. Based on our own experiences

and the evaluations we have received from the users of the National Energy Research Scienti�c Center

(NERSC <http://www.nersc.gov>), we give scores to each package. Table 5 shows the scores we have

assigned. The heading of each category is meant to be self-explanatory and footnotes are provided within

the table to explain the terms that might not be obvious. We have chosen to use only three values for scores.

As we accumulate more experience in using the di�erent linear system solvers, we might re�ne the scoring

system to �ne-tune the scores. In most cases, a score of 1 means that the package is weak in the category,

2 means acceptable, and 3 means good. We will next give some general comments about all the packages,

speci�c comments about each individual packages will follow.

� Documentation of most packages are reasonably well prepared. In particular, PETSc and PINEAPL

have extensive documentation on all aspects of their implementations. LINSOL and P SPARSLIB lack

documentation about the software interface and their existing documents are out of date. The �rst
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Table 5: Usability scores for the eight portable parallel iterative solver packages (1 needs improvement, 2
acceptable, 3 good, no score is given if we can not evaluate).

Aztec BlockSolve ISIS++ LINSOL P SPARSLIB PARASOL PETSc PINEAPL
documentation

clarity 2 3 2 1 2 3 3 3
depth 3 3 2 1 1 2 3 3
breadth 2 3 3 2 1 1 3 3
structure 2 3 3 2 1 2 3 2

learning curve

examples 2 2 2 1 1 2 2
simple
taska 2 3 3 1 2 3 2
advanced
featuresb 3 3 3 1 2 3 2

user interface

consistency 2 3 3 2 3 3 3
arg listc 1 3 3 1 3 3 1
complexityd 2 2 3 1 3 1
feed backe 2 2 2 1 3 3

other

availability 2 3 3 3 3 3
installation 1 2 2 2 3
support 3 1 3 3 3 3 1

recommendation

application 3 1 2 1 2 3 1
research 2 2 2 3 3 3 1

aHow easy is it to solve a simple linear system?
bHow easy is it to use the most advanced features o�ered?
cHow short and intuitive are the argument list of the user-interface?
dHow easy is it to prepare the required arguments before using the iterative methods?
eHow useful is the feedback from the functions of the packages?
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thing a user document should explain is the overall schema of the software interface design, but most

documents often miss this important part.

� Examples are usually provided by the packages. Here we mostly look for the presence of simple

examples that can help users to get start quickly and easily. An ideal example of this type should

be less than a page when printed on paper, have just enough information to solve an example linear

system of equations and have enough comment in the code for the user to follow along. A score of 1

in this category means there is no simple example provided or the examples are not well explained for

a user to follow, 2 means some examples are provided but there is a lack of an \ideal" example.

� Ease of use is measured by the e�ort required to solve a simple problem (simple task) and the e�ort

required to utilize the advanced features (advanced features). In these two categories, a score of 3

indicates that we anticipate an experienced programmer can integrate the package into his or her

program in less than a day, 2 means that the integration may need less than one week's work, and

1 means that the integration needs more than a week's work. Generally, the packages that utilize

data encapsulation provided by C and C++ programming language require less time to use and those

that require the user to allocate every array composed of the sparse matrix data structure and the

preconditioner data structure need more time to learn and to use.

The time needed to use the advanced features are measured as the additional time needed after one

is able to solve simple problems. This measures the e�ort required for a novice to become an expert

user. Those packages that do not require the user to explicitly construct preconditioners are relatively

easy to master.

� User interface should be clean, intuitive, and always provide useful feedback. Consistency in naming

the functions and conformance to the overall schema of the package design is the �rst subcategory

evaluated here. Most of the eight packages that we have seen provides reasonably consistent interface.

The next two subcategories measure the length of the argument list and the e�ort required to prepare

those arguments. On the argument list length, we give a score of 1 for those with functions that has

more than 20 arguments in a key function, 2 for those with 10 to 20 arguments and 3 for those with less
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than 10 arguments. Typically data encapsulation is used to reduce the argument list size and having

a better designed interface for the solvers can also reduce the size of the argument list. Time needed

to understand the resource requirement of each argument is a major part of the time needed to use

the software package. In many cases, it is appropriate to hide this type of complexities. Aztec and

P SPARSLIB do not hide this complexity; PETSc is regarded as the standard for this type of software;

and PARASOL is a good e�ort to hide this type of complexity in Fortran programs.

� Availability of the eight packages are generally good. Table 1 lists where are the packages can be

found on the web. Most of them can be downloaded from the web, only Aztec and PINEAPL need

extra work. Aztec requires the user to �ll out a web form and the user will receive a password by email

to enter the actual download page. PINEAPL needs a formal commercial license.

� Installation of the packages are usually pretty easy. The easiest installation requires two command

on a unix machine, configure and make install. PETSc and BlockSolve is rated 3 on this category

because they come as close two this idea situation as can be expected. Most of the other packages

require one to manipulate Makefiles in one way or another or require one to install a number of other

packages and obtaining extra �les from an archive.

� Interoperability should be good for these packages since solving a linear system of equations is a very

well de�ned task involving small number of objects. However because the di�erences in data structure

and the user interface, it is not trivial to change from one package to another. Table 6 lists the score

based on the estimated time required to switch from using a package heading the rows to a package

heading the columns. Again, the score are based on 3 for a one-day e�ort, 2 for a one-week e�ort and

1 for a multi-week e�ort.

� User support from the developers are generally good since most of the packages have a relatively

small user community. Most of the developers can respond to an inquiry in a day or so. In addition,

there is an e�ort by the US Department of Energy to o�er uni�ed support through the Advanced

Computational Testing and Simulation toolkit, for further information see http://acts.nersc.gov

which can further enhance the user support for scienti�c computing softwares.
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Table 6: Ease of change from using one package to another

=) Aztec BlockSolve ISIS++ LINSOL P SPARSLIB PARASOL PETSc PINEAPL
Aztec 2 3 1 2 2 1
BlockSolve 1 2 1 2 2 1
ISIS++ 3 2 1 2 3 1
LINSOL
P SPARSLIB 2 2 2 2 2 1
PARASOL 2 3 3 1 3 1
PETSc 3 3 2 1 2 1
PINEAPL 2 2 2 1 2 2

In addition to the above general comments about the score and the scoring system, we also o�er a few

comments about some of the packages that we have acquired personal experience.

Aztec Version 2.0 of the source code and the corresponding documentation are available as of July of

1998. The documentation could use some more editing to improve readability but it contains the essential

information needed for a user to get started. Table 5 contains the usability score for this package, the

following are more speci�c comments that can be regarded as footnotes to the scores.

� The solution vector needs to contain extra space to provide workspace for matrix-vector multiplication.

This feature is not mentioned in the documentation and it not obvious in the example program either.

� After calling the required transformation routine to process the input matrix, the user need to explicitly

reorder the right-hand side and the initial guess. The documentation neglected to mention this.

� The description of the DVBR is not very clear. The title of the section suggest some hierarchical

relation between DVBR and DMSR which is misleading.

� No provision for repeatedly solving linear systems with coe�cient matrix of the same nonzero pattern.

BlockSolve This package was last updated in 1997. The focus appears to be providing two parallel

incomplete factorization preconditioners which are missing in many other packages. The preferred way of

using this package would be to use it through PETSc.
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ISIS++ This is a package that is actively being developed. The developers are also involved in an e�ort to

componentize linear system solution, see Equation Solver Interface forum at http://z.ca.sandia.gov/esi.

As part of this e�ort, this package is designed to access a number of other existing packages. However, the

developers appear to have put in too much emphasis on the object-orientation o�ered by C++ and have

not paid enough attention to inter-language related issues. As of this writing, the developers have released

version 1.2.0 of the package.

P SPARSLIB The language used to implement this package is Fortran 77 which can not perform dynamic

memory allocation. Because of this, the user is required to allocate enough workspace for each array used

in the sparse matrix data structures. Since Fortran 77 does not have user de�ned data type, there are many

individual arrays which are exposed in the user interface. This leads to too many arguments in the calling

sequence. Understanding the memory requirement can be a complicate task and users often need to spend

signi�cant amount of time on this. P SPARSLIB and PINEAPL appear to both have this kind of problem.

P SPARSLIB has a set of strong preconditioners based on incomplete LU factorization and a selection of

update-to-date iterative methods. It is mostly designed to be a toolkit for research scientists in the numerical

analysis �eld. There has been some minor user interface modi�cation between release 2 and release 3 of the

software.

PARASOL Since this package is implemented in Fortran 90, it has the bene�t of the data encapsulation

and it is able to allocate computer memory dynamically. This makes it more convenient to o�er more

easy-to-use software interface than earlier Fortran based packages. This package has a complete set of user

interface design documents and it has a number of industrial partners which provide direct user input to the

development process. Its strongest linear system solution feature is a multifrontal direct solver.

PETSc This package is well designed and widely used. It is among the �rst MPI based program packages

available to the public. It has a good set of iterative methods but has a weak set of preconditioners. However,

since it is able to access the preconditioners provided by BlockSolve, the user can easily use preconditioners

provided by both PETSc and BlockSolve. Recent integration e�ort is likely to make it easier to access more
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packages such as Aztec without modi�cation to the user code. One perceived shortcoming of this package

is that it appears to have higher learning curve though our own experiences demonstrate otherwise. Part

of this perception comes from the fact that the package is bigger than others. PETSc requires the user

to use its own initialization and clean-up procedure instead of the corresponding functions from MPI. This

gives the user the impression that PETSc is taking over the program. It is also possible that this may be a

source of real concern if the user program uses another package that requires one to use its initialization and

clean-up procedures as well. PETSc compiles into a number of archive �les which are to be linked into the

user program. However the selection of these archive �les is not well explained. The users have to use the

make�le stubs provided by PETSc in order to link with the correct �les. Simplifying this complexity could

also go a long way in removing the perceived high learning curve.

7 Performance

This section provides a very limited amount of performance information about two of the eight portable

parallel iterative solver packages: Aztec and PETSc. We only collected performance information on these two

package because they are the two most commonly used ones among the users that we have come into contact

during the operations of the National Energy Research Scienti�c Center. Trying to collect comprehensive

performance information will take signi�cantly more time which will delay the completion of the report and

rendering it less timely for the reader. The performance of the linear system solvers are signi�cantly a�ected

by particularities of the iterative methods, preconditioners, linear systems and the computer system used, we

have chosen to make our tests as simple as possible. The test matrices are listed in Table 7; the right-hand

sides of the test linear systems are vectors with all elements equal to one; the initial guess is always zero.

Our tests run the restarted version of GMRES(30) without preconditioning for 500 iterations7.

The test program performs the following operations,

� read in the matrix from disk,

7We did plan to run the iterative methodswith preconditioning, however, our numerous attempts failed to �nd a combination

of iterative method and preconditioner that is able to reduce the residual norm by six order of magnitude in 500 iterations

using Aztec and PETSc.
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Table 7: Information about the �ve test problems. (MB is short for Mega Bytes.)

name order(N) NNZ �le size description
A1 199911 14955879 180 MB a �nite element model of deformation of a

complex composite structure [1]
Aug7 1060864 9313876 116 MB the support operator discretization of a

radiation transport model [25, 34]
Aug9 1060864 8313856 104 MB the Morel-Hall discretization of a radia-

tion transport model [25, 34]
CPC.K 637244 30817002 253 MB the sti�ness matrix from structural anal-

ysis
Omega3P 1066302 17117586 210 MB a �nite element discretization of the

Maxwell equation in complex domain [32]

� feed the matrix to Aztec or PETSc, i.e., convert the matrix to the format required by the package to

be used,

� generate a zero vector as initial guess and a vector of all ones as the right-hand side of the linear

system,

� set parameters to indicate that GMRES(30) should be used without preconditioning for 500 iterations,

� run the iterative method.

All steps except the last one are considered setup steps for the iterative solution. When measuring time, the

�rst four steps are counted as setup time, the last step is labeled as GMRES time. The matrices are stored

in a portable binary format. When read into computer memory, they are distributed in a simple block-row

format.

The setup time and the iteration time are reported in Table 8 and Figures 1 and 2. Overall, Aztec

and PETSc use about the same amount of time when solving the same test problem. From Table 8 and

Figures 1 and 2, one preeminent feature is that the setup time 
uctuates wildly. To a large extend, this


uctuation is due to the �le IO contention. From Table 7, we see that the size of the matrix �les are fairly

large, 100 { 250 MB. When the test program uses a small number of processors, it is likely there are a

number of other jobs running at the same time which might also require �le IO operations. This may cause

signi�cant delay in reading of the matrices. When the packages prepare the input matrix for performing

sparse matrix-vector multiplications, signi�cantly amount of data may be exchanged among the processors.
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Table 8: Performance information collected from solving the �ve test problems on a 512-processor Cray T3E
900. (PE is short for processing element, i.e., processor.)

Aztec

elapsed time (seconds) speed-up
8-PE case 128-PE case 8-PE ! 128-PE

setup GMRES total setup GMRES total GMRES total
A1 48.1 56.4 104.5 44.7 7.44 52.1 7.6 2.0
Aug7 749.2 210.2 959.4 32.9 20.1 53.0 10.5 18.1
Aug9 229.9 180.0 409.9 28.8 19.1 47.9 9.4 8.6
CPC.K 74.3 159.4 233.7 70.2 23.4 93.6 6.9 2.5
Omega3P 68.8 189.1 257.9 53.9 19.8 73.7 9.6 3.5

PETSc

elapsed time (seconds) speed-up
8-PE case 128-PE case 8-PE ! 128-PE

setup GMRES total setup GMRES total GMRES total
A1 48.8 54.5 103.3 43.2 6.79 49.0 8.0 2.1
Aug7 33.1 227.9 261.0 30.7 25.1 55.8 9.1 4.7
Aug9 28.8 246.3 275.1 27.3 22.7 50.0 10.9 5.5
CPC.K 77.9 146.5 224.4 74.9 19.8 94.7 7.4 2.4
Omega3P 65.5 211.5 277.0 53.4 18.8 72.2 11.3 3.8
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Figure 1: Time (seconds on T3E) to run the test problem CPC.K.
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Figure 2: Time (seconds on T3E) to run the test problem Omega3P.

Since this process involves complex data communication, it may cause network congestion which can also

introduce large variations when di�erent number of processors are used. The data in Table 8 seem to suggest

that only the Aztec test program su�ers from this setup variation, in fact both test programs su�er the same

problem. The variations are usually larger when less than 32 processors are used.

The time used by GMRES reduces monotonically until 256 or 512 processors are used. When the test

matrices are distributed onto 256 or 512 processors, each processor has a relatively small amount of arithmetic

work to do and the communication overhead is likely to dominate the total time spend in the parallel sparse

matrix-vector multiplications. In short, even though the test problems are reasonably large, they are still to

small to e�ectively utilize 256 or 512 processors. All �ve test problems can be easily �t onto 8 processors of

the Cray T3E 900 that has 256 MB memory on each processor8. For these reasons, Table 8 shows the time

on 8 processors and 128 processors.

Increasing the number of processor from 8 to 128, the time used to run GMRES for 500 iterations reduces

8See NERSC web page http://hpcf.nersc.gov/computers/T3E for more information about the T3E.
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by a factor ranging from 8 to 11. However, the total time, including both setup time and GMRES time, only

decrease by a factor of 2 to 5 because the time required to read the matrices stay relatively constant when

the number of processors increases. The GMRES method from PETSc shows slightly better speed-up than

that from Aztec. This might indicate the parallel sparse matrix-vector multiplication in PETSc is slightly

more e�cient than the one in Aztec.

While running the test programs, we observe that the Aztec test program encounters Operand range

error when working on Aug7 and Aug9 test problems on 512 processors. This is a typical symptom of a

programming error.

8 Summary

We have reviewed eight portable parallel iterative method packages that are currently available. Among

the eight packages, Aztec and PETSc are the most commonly used ones. Both packages are fairly well

documented, have reasonably clean user interface and provide good user support. Between the two packages,

PETSc has slightly better designed user interface. In our tests, it also behaves better when large number of

processors are used.

A large part of PETSc's popularity is due to the fact that it is one of the earliest available MPI based

linear system solution package. Over the years it has grow to be a mature software package with a large user

basis. Its main weakness is its size. PETSc was designed to solve many problems of scienti�c computing,

e.g., linear system of equation, nonlinear equations, and ODE problems, and it even has its own compiling

procedure consisting of a set of make�le stubs. The user who committed to use PETSc has to embrace the

whole design of the package, such as, using PETSc version of initialization and �nalization functions instead

of the corresponding functions of MPI, using PETSc error checking functions, and using the make�le stubs

to build the programs correctly. This is a signi�cant commitment and a one that can not be easily reversed.

PETSc has a well designed error handling capability. It is surprising to encounter a case where it hangs

when failed to allocate internal variables.

Because of the signi�cant commitment associated with using PETSc, many application programmers just
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started to use linear system packages are turning to Aztec and other packages. Many users choose Aztec

because it provides a good set of functionality for solving linear systems and it is modest in size. There

is also a perception that since Aztec is dedicated to solving linear systems, its core operations such as the

sparse matrix-vector multiplication might be better implemented than those in PETSc. Our limited tests

suggest that this perception might not be true.

Among the other six packages, PARASOL has a strong emphasis on direct solver and is best suited

for those users who are required to use Fortran; ISIS++ provides hooks for users to access many di�erent

packages and is best suited for C++ users. For most application programmer, we believe the Fortran 77 based

packages require too much e�ort to get started because the user has to provide numerous arrays of correct

sizes. Among the three Fortran 77 based packages, LINSOL, P SPARSLIB and PINEAPL, P SPARSLIB

is the best one. We recommend it for the specialist who want to control every aspects of the linear system

solution process. P SPARSLIB also has an impressive set of preconditioners which can be critical in solve

di�cult linear systems.
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Appendix A Related software

In addition to the packages reviewed, there are a large number of packages that are primarily devoted to

solve linear systems of equations, have a major component for solve linear systems, or provide more specialize

services such as preconditioning. This section provides some pointers about some of these packages. The

emphasis is still on packages that solves linear systems. To facilitate searching for other related packages,

we also list a few archives that the authors often visit.

A.1 Other iterative solver packages

In addition to the parallel iterative methods listed in Table 1, there are many other packages that can be used

to solve linear systems and there are many larger packages that include linear system solution components

as well. We refer readers to Eijkhout's 1998 review of linear system solver packages [15]. Here we will only

brie
y mention the two parallel iterative solver packages not reviewed.

� DOUG This package is primarily designed to solve linear systems arising from �nite element discretiza-

tion of PDE problems [23, 24]. The main developers are M. J. Hagger and L. Stals from University

of Bath. It contains a good selection of domain decomposition based preconditioning schemes. The

software is implemented in Fortran with MPI as the communication layer. We did not evaluate this one

because it requires the user to provide information about the �nite element discretization which may

not be available if the linear system is generated by other means. Those interested in the software can

visit http://www.maths.bath.ac.uk/�parasoft/doug to obtain the software and the documentation.

� N SPARSE SPThis package is fromElegant Mathematics, Inc. (USA) founded by Dr. Alex Yu. Yeremin

and colleagues. It is written in Fortran and has been primarily used on IBM SP systems. The greatest

strength of this package is its implementation of factorized sparse approximate inverse preconditioners

[30, 31]. At the time of this writing, we only have access to some documentation of the package [16],

but not the package itself. For this reason, we did not provide extensive evaluation of the package.

Those interested in this package should visit http://www.elegant-math.com for more information.
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A.2 Dense direct solver

In some cases, the linear systems to be solved are reasonably small or its zero entries are too few for

any algorithm to take advantage of, the coe�cient matrix of these linear systems are usually stored as

dense matrices. The most commonly used algorithm to solve these linear systems are based on Gauss

elimination. The most commonly used package for solving these type of linear system is LAPACK on

sequential machines and ScaLAPACK on distributed machines. For those who are more familiar with object

oriented programming, LAPACK++ is available for the sequential machines and PLAPACK is a good

alternative on distributed machines. There are a number of commercial packages that are quite successful,

but the authors have very little experiences using them. Further information about these two packages can

be found on the web, see Table 9.

A.3 Sparse direct solver

Often the coe�cient matrices of the linear systems contain a signi�cant portion of zero entries and are

too large to be treated as dense matrices. In these cases, sparse versions of the Gauss elimination (LU

factorization) may be successfully used. These types of methods are known as sparse direct methods. We

refer the reader to the software archives listed below for sparse direct methods for sequential machines. Here

we brie
y mention the parallel sparse direct method packages that are known to us. PSPASES is one of the

�rst publically available parallel sparse direct methods package. It implements the Cholesky factorization

for symmetric positive de�nite linear systems and it is only able to function on power of two number of

processors. Because there is no need of pivoting, it is able to run e�ciently on a variety of machines

[28, 48]. S+, SuperLU, UMFPACK and SPOOLES are all able to solve nonsymmetric linear systems. S+

and SuperLU use versions of supernode based algorithms, UMFPACK employs a multifrontal algorithm.

All these three software packages partition both rows and columns at the same time. This partitioning

scheme requires more complex data structure support, but are important in achiving high parallel e�ciency

and good load balance during both factorization and triangular solution phases. SPOOLES uses a unique

data structure termed chevron which allows a 
exible implementation of many di�erent functions in a single

code base. For example, SPOOLES implements LDLT factorization for symmetrix inde�nite matrices, LU
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factorization for nonsymmetric matrices, QR factorization and it can be run on sequential environment,

multithreaded environment and distributed parallem environment. This package is especially designed with

the shift-and-invert Lanczos method in mind and it is suitable for all other cases where many sparse matrices

of same nonzero pattern are factored. To accommodate possibility of pivoting, most of the parallel direct

solvers need to use very complex data structure which a�ects scalability and e�ciency. However, in the cases

where sparse factorization can be stored in computer memory, sparse direct methods are often more robust

and/or more e�cient.

A.4 Parallel preconditioner

The preconditioners implemented in the eight reviewed packages are mostly based on incomplete LU factor-

ization or overlapping Schwarz iteration. A larger variety of preconditioning schemes are being developed

constantly. Here we mention just a few to give readers a sense of what is available out there. BPKIT imple-

ments a set of block preconditioners in C++ and it o�ers a 
exible way of varying from simple Gauss-Seidel

iterations; PARPRE o�ers a set of domain decomposition based preconditioners and a number of ILU and

SOR type of preconditioners; SPAI implements a sparse approximate inverse preconditioner that computes

the sparsity pattern of the approximate inverse dynamically; Prometheus builds a domain decomposition

based preconditioner on top of PETSc. Other on-going projects, such as HYPRE, are developing more

sophisticated preconditioning schemes that are expected to be robust and easy to use, for more information

see Table 9.

A.5 Archives

There are a number of archives on the world wide web that are devoted mostly to scienti�c computing

software packages. The following is a short list that the authors visit frequently.

� The ACTS toolkit page (http://acts.nersc.gov). This web site is funded by US Department of

Energy (DOE). Its main goal is to maintain useful information about the software packages that are

funded by DOE.
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Table 9: The web addresses for other linear system related packages mentioned.

other parallel iterative packages

DOUG http://www.maths.bath.ac.uk/�parasoft/doug
N SPARSE SP http://www.elegant-math.com
dense direct solver

ScaLAPACK http://www.netlib.org/scalapack
PLAPACK http://www.cs.utexas.edu/users/plapack
sparse direct solver

PSPASES http://www-users.cs.umn.edu/�mjoshi/pspases
S+ http://www.cs.ucsb.edu/Research/s%2b
SuperLU http://www.nersc.gov:/�xiaoye/SuperLU
SPOOLES http://www.netlib.org/linalg/spooles
UMFPACK http://www.cise.u
.edu/�davis/umfpack.html
parallel preconditioner

BPKIT http://www-users.cs.umn.edu/�chow/bpkit.html
PARPRE http://www.cs.utk.edu/�eijkhout/parpre.html
SPAI http://www.sam.math.ethz.ch/�grote/spai/spai-page.html
Prometheus http://www.cs.berkeley.edu/�madams
HYPRE http://acts.nersc.gov/hypre/main.html

� Netlib (http://www.netlib.org). This site has one of the most extensive collections of scienti�c

computing software packages. It should be the �rst place to visit for anyone who is interested in

numerical analysis and related software. This site also contains useful links to many other resources.

� ACM TOMS archive (http://www.acm.org/calgo). This site collects all software published in ACM

Transactions on Mathematical Software. It also has an extensive links to other mathematical software,

http://www.acm.org/toms.

� The NHSE (http://www.nhse.org/)is a distributed collection of software, documents, data, and infor-

mation of interest to the high performance and parallel computing community. This site also publishes a

web-based journal named NHSE Review that provides indepth review of scienti�c computing software.

� Scienti�c Applications on Linux (http://SAL.KachinaTech.COM/index.shtml) is a searchable archive

with more than 2500 entries of freely available scienti�c programs. As linux becomes a more main-

stream computer engine for the academia and smaller research institutions, software for linux platform

will become more important.
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� The Virtual Library (http://src.doc.ic.ac.uk/bySubject/Computing/Overview.html)maintained

by the Department of Computing, Imperial College, UK has a long list of various on-line resources

ranging from popular computer journal to esoteric algorithms research.

� NUMERICA (http://www.numeritek.com) is a company with a stated purpose of \bringing cutting-

edge research in numerical methods closer to practical applications". It serves commercial customer

for fee like NAG and others, but it also distributes its software for free, see NUMERICA website for

terms and conditions.

� The popular web portals such as Yahoo, Netscape and Hotbot all provide some listing of popular

mathematical software.

{ Yahoo: http://dir.yahoo.com/Science/Mathematics/Software

{ Netscape: http://search.netscape.com/Science/Math/Software

{ Hotbot: http://dir.hotbot.lycos.com/Science/Math/Software
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